For the past couple of years, Intel has introduced Turbo Boost and Turbo Max and now we have Turbo Boost Velocity. While Intel sets a defined standard on how these values affect CPU performance and how long they stay active, motherboard makers were always given rights to comply with these standards. With quad-core CPUs, this wasn’t much of a concern but with newer 6-cores and more-cores CPUs, this has exponentially added to the power draw of these CPUs.
You see, the way this works is that Intel sets the TDP or Thermal Design Power for CPUs at a certain level, in the case for the 10th-gen 10900K, 125W. With Turbo Boost 2.0 active, that will increase until a workload is finished or the CPU meets certain thresholds. On top of this, there is also Turbo Boost Max and Turbo Velocity Boost. These values are set by Intel for the CPU and will take advantage of lifting performance if certain conditions are met. In most cases, especially for gaming or enthusiast boards, companies assume that gamers will be using more exotic cooling that meets or exceeds the TDP rating of the CPU. This means,ย gaming boards from ASUS, AORUS/GIGABYTE, ASRock, MSI, EVGA, and everyone else that markets themselves as a performance board, in assuming the user has good cooling, will set their own values for Turbo.
Now this has a direct effect on benchmark results, temperatures and power draw, of course. With the higher clocks, power drawn from the outlet increases as the TDP rating increases and so does temperatures. This are usually out-of-box settings for specific boards hence their default settings. While advanced overclockers used to tuning these timings and values can configure the boards to meet a satisfactory setting, most casual consumers will just set XMP and go. This means that in exchange power absolute performance, these boards are assuming users can meet the cooling standards that their settings induce.
Here in Back2Gaming, I test motherboard with out-of-box settings, noting in our conclusion if the BIOS is tuned right, etc. In reading these reviews, we highly urge readers to have an understanding of this behavior as they are not directly Intel’s decision to make which may lead to misinformation about the power draw and temperatures of these CPUs. This, in turn, has its upside besides performance as it shows us a good balance of how much confidence a board maker has on its products if and they do implement an unrestrained Boost on motherboards that are relatively lighter on its VRM cooling, VRM design, lower price, etc. but we will be critical if board makers are just doing this to increase review scores